.NET, F#, Programming

How to read settings from configuration file in F#

During the work on one of the projects I had to make connection to the SQL server to fetch data. Most of the development time I spent in F# interactive – I create some sort of scratchpad script file (with fsx extension) and run VSCode with Ionide extension. This works like a charm with all features you expect from modern code editor like autocomplete, linting and syntax highlighting. Having built-in REPL allows you to use NuGet packages, load files with F# code, reference managed assemblies and execute selected parts of the code by pressing Alt+Enter directly in editor.

During development you could keep connection string in constant or variable, but at some stage, when you finalize project you want to move everything to config file. There is a problem related to this however. The way how default executable treated depends on the context. In case of F# project the default executable is the current project .config file. In case of F# interactive it is Fsi.exe.config. So solution which works fine for your F# project will fail when you run from F# interactive. I will show you how you can make it work in both contexts.

So, how to read configuration file in your F# project? Well, one great and simple option is just to use AppSettings type provider. It will expose your app.config in a strongly typed way. If you don’t know what type providers are please refer to the documentation. There is no direct analogy in C# to this concept. As author of F# language said:

A design-time component that computes a space of types and methods on-demand…

An adapter between data/services and the .NET type system…

On-demand, scalable compile-time provision of type/module definitions…

Don Syme

However in this post I would like to show you how you can create a simple abstraction to read connection string (or any other section like appSettings) and what caveats are on your way. Assume we have following app.config file in the root folder of our demo app:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
    <connectionStrings>
        <add name="NinjaConnectionString" connectionString="Server=(localdb)\MsSqlLocalDb;Database=NinjaDb;Trusted_Connection=True;"/>
    </connectionStrings>
</configuration>

Solution for F# projects

Let’s create Configuration.fs file and start with class definition for our configuration abstraction:

type NinjaConfiguration() = class
    static member ConnectionString = ()
end

Ok, now we need a function to read a config file (assuming you have your configuration file in bin folder and named {project-executable}.config). Just add this section to your fsproj to copy app.config from your project’s root to bin on each build:

<Target Name="CopyCustomContent" AfterTargets="AfterBuild">
        <Copy SourceFiles="app.config" DestinationFiles="$(OutDir)\ninja_app.dll.config" />
</Target>

The function to read connection strings could look like this:

let private tryGetConnectionString (connectionStrings: ConnectionStringSettingsCollection) name =
    seq { for i in 0..connectionStrings.Count - 1 -> connectionStrings.[i] }
    |> Seq.tryFind(fun cfg -> cfg.Name = name)
    |> function
    | Some cs -> Some cs.ConnectionString
    | _ -> None

The signature of the function is

(ConnectionStringSettingsCollection -> string -> string option)

It takes ConnectionStringSettingsCollection and name of the connection element in your app.config and returns option of string with it’s value or None.

On line 2 we create a F# sequence expression to wrap standard .NET collection type. This will allow us to use any idiomatic F# language constructs which applicable to collections (think of all functions in Seq module, pipe operator, etc.).

On line 3 we immediately benefit from it by piping all elements from connection string section to Seq.tryFind and using lambda function to find only setting we need by name parameter. This will iterate over all entries in connection strings and compare it against Name property of ConnectionStringSettings class. If it finds an entry, Some of ConnectionStringSettings will be returned, otherwise None.

Lines 4-6 just extract connection string from it with a simple pattern matching.

Let’s update NinjaConfiguration class:

type NinjaConfiguration() = class
    static member ConnectionString = 
        tryGetConnectionString ConfigurationManager.ConnectionStrings "NinjaConnectionString"
end

This is already working code, however without error handling it is not complete, so let’s add try-with section to be sure that when file is missing we not bubble up runtime exception in your face:

type NinjaConfiguration() = class
    static member ConnectionString = 
        try
            tryGetConnectionString ConfigurationManager.ConnectionStrings "NinjaConnectionString"
        with
            | Failure (_) -> None
end

Much better. If there is a problem with finding or opening configuration file we return None. Same for the case when there no connection string with NinjaConnectionString name found. Put it all together we should come up with this code:

module Ninja.Configuration

open System.Configuration

let private tryGetConnectionString (connectionStrings: ConnectionStringSettingsCollection) name =
    seq { for i in 0..connectionStrings.Count - 1 -> connectionStrings.[i] }
    |> Seq.tryFind(fun cfg -> cfg.Name = name)
    |> function
    | Some cs -> Some cs.ConnectionString
    | _ -> None

type NinjaConfiguration() = class
    static member ConnectionString =
        try
            tryGetConnectionString ConfigurationManager.ConnectionStrings "NinjaConnectionString"
        with
           | Failure(_) -> None
end

Extending solution to work in F# interactive

Previous solution works fine when you run it with F5 in VSCode or Visual Studio IDE or via dotnet run command line. But how to make it work in F# interactive?

Let’s create simple scratchpad.fsx to use NinjaConfiguration in F# interactive:

#r "nuget: System.Configuration.ConfigurationManager" // install NuGet package needed for Configuration.fs
#load "Configuration.fs" // load our NinjaConfiguration class

open Ninja.Configuration // open module so that type will be available for use
let connStr = NinjaConfiguration.ConnectionString

val connStr : string option = None. 

App.config in the same folder where scratchpad.fsx and Configuration.fs. So why result is None? The answer is that default path for lookup will be fsi.exe and since we used ConfigurationManager.ConnectionStrings it will start search config file from global scope (machine.config). So to solve that issue we need to set current directory for F# interactive and map configuration file to that folder. To make it work in both contexts we need to add conditional compiler directive (let’s call it COMPILED). Let’s make final changes to our code in Configuration.fs to the following snippet:

module Ninja.Configuration

open System.Configuration

let [<Literal>] private DbConnectionStringName = "NinjaConnectionString"

let private tryGetConnectionString (connectionStrings: ConnectionStringSettingsCollection) name =
    seq { for i in 0..connectionStrings.Count - 1 -> connectionStrings.[i] }
    |> Seq.tryFind(fun cfg -> cfg.Name = name)
    |> function
    | Some cs -> Some cs.ConnectionString
    | _ -> None

type NinjaConfiguration() = class
    static member ConnectionString =
        try
            // Executes in F# project/solution when provided COMPILED compilation directive
            #if COMPILED 
                tryGetConnectionString ConfigurationManager.ConnectionStrings DbConnectionStringName
            #else // Executes in script environment (fsx file)
                System.IO.Directory.SetCurrentDirectory (__SOURCE_DIRECTORY__)
                let fileMap = ExeConfigurationFileMap()
                fileMap.ExeConfigFilename <- "app.config"
                let config = ConfigurationManager.OpenMappedExeConfiguration(fileMap, ConfigurationUserLevel.None)
                tryGetConnectionString config.ConnectionStrings.ConnectionStrings DbConnectionStringName
            #endif
        with
           | Failure(_) -> None
end

After change re-execute following lines in the script:

#load "Configuration.fs" // load our NinjaConfiguration class

open Ninja.Configuration // open module so that type will be available for use
let connStr = NinjaConfiguration.ConnectionString

Now result is:

val connStr: string option = Some "Server=(localdb)\MsSqlLocalDb;Database=NinjaDb;Trusted_Connection=True;"

After adjustments the code in Configuration.fs will work in both cases: as a part of F# project or in F# interactive. Same principle applies to any IO: if you want your code to work in both contexts you need to take this in consideration.

Happy coding!

.NET, C#, Programming

Make your C# code cleaner with functional approach

Since introducing LINQ in .NET 3.5, the way how we write code changed a lot. Not only in the context of database queries with LINQ to SQL or LINQ to Entities, but also in day-to-day work with manipulating collections and all kind of transformations. Powerful language constructs like implicitly typed variables, anonymous types, lambda expressions and object initializers, gave us tools for writing more robust and conciseness code.

It was a big step towards functional approach to solve engineering tasks by using a more declarative way of expressing your intent instead of sequential statements in imperative paradigm.

Functional programming is a huge topic and mind shift for all .NET developers who is writing their code in C# for a long time. If you are new to the topic (like me), you probably don’t want to get into all that scary sounding things like functors, applicatives or monands right now (discussion for other posts). So let’s see how applying a functional approach could make your code cleaner here and now with our beloved C#.

For the sake of example we will solve a very simple FizzBuzz kata in C#. I will show you how it looks like in F#. If you don’t know what is kata, it just a fancy way of saying puzzle or coding task. The word kata came to us from the world of martial arts and particularly Karate. The FizzBuzz is a simple coding task where you need to solve the following problem:

Write a program that prints the numbers from 1 to 100. But for multiples of three print “Fizz” instead of the number and for the multiples of five print “Buzz”. For numbers which are multiples of both three and five print “FizzBuzz “

So, first we will start with naïve implementation in C#:

void Main()
{
    for(var i = 1; i <= 100; i++)
    {
        if(i % (3 * 5) == 0)
            Console.WriteLine("FizzBuzz");
        else if(i % 3 == 0)
            Console.WriteLine("Fizz");
        else if(i % 5 == 0)
            Console.WriteLine("Buzz");
        else
            Console.WriteLine(i);
    }   
}

And here’s the output:

1
2
Fizz
4
Buzz
Fizz
7
8
Fizz
Buzz
11
Fizz
13
14
FizzBuzz
...

So far so good. I told you, it’s a piece of a cake. Okay, how we can improve this code? Let’s use the power and beauty of LINQ:

void Main()
{
	var result = Enumerable
		.Range(1, 100)
		.Select(x => {
			switch(x)
			{
				case var n when n % (3 * 5) == 0: return "FizzBuzz";
				case var n when n % 3 == 0: return "Fizz";
				case var n when n % 5 == 0: return "Buzz";
				default: return x.ToString();
			}			
		})
		.Aggregate((x, y) => x + Environment.NewLine + y);
	
	Console.WriteLine(result);
}

We use the static helper Range on Enumerable to generate a sequence from 1 to 100. Then we use the Select method to iterate over each number in that range and return a string which contains one of those FizzBuzz words. We used very powerful concept – pattern matching. This feature is available from C# 7.0. This variation of pattern matching uses var pattern with when clause for specifying condition. Last method in chain is Aggregate. It is one of the most interesting in the LINQ – you could use it as a functional replacement for the loops in your code base. In this example we concatenated each element in sequence with a new line producing string as a result.

In C# 8.0 pattern matching was extended and improved. We can re-write our code like this:

public static string FizzBuzz(int n) =>
        (n % 3, n % 5) switch
        {
            (0, 0) => "FizzBuzz",
            (0, _) => "Fizz",
            (_, 0) => "Buzz",
            (_, _) => $"{n}"
        };
 
 static void Main(string[] args)
 { 
     foreach (var n in Enumerable.Range(1, 100))
     {
         Console.WriteLine(FizzBuzz(n));
     }
 }

This syntax is much closer to how pattern matching is applied in functional languages. In functional languages _ is called a discard symbol – meaning we are not interested in value in that position. We used what is called tuple pattern here.

  • When remainder of 3 and 5 in both positions 0 – we print “FizzBuzz”.
  • When remainder of 3 is 0 and we not interested in the remainder of 5, we print “Fizz”.
  • When the remainder of 5 is 0 and we not interested in the remainder of 3 we print “Buzz”.
  • For all other cases we just print value of the n.

Remember, in pattern matching order matters – first matched condition win and further calculation stops.

Finally, let’s look at the F# implementation of the kata:

let fizzBuzz list  = 
    list |> List.map (fun x -> 
        match (x % 3, x % 5) with
        | (0, 0) -> "FizzBuzz"
        | (0, _) -> "Fizz"
        | (_, 0) -> "Buzz"
        | _ -> string x
    )

fizzBuzz [1..100] |> List.iter (fun x -> printfn "%s" x)

You can see that this sample is very similar to the previous one with C# 8.0 pattern matching. And this should not surprise you, because the C# team is introducing more and more functional constructs in the language with each version, taking all the good parts from F#.