Tag: C#8

C# 8.0 pattern matching in action

Let’s revisit definition of the pattern matching from the Wiki:

In computer sciencepattern matching is the act of checking a given sequence of tokens for the presence of the constituents of some pattern. In contrast to pattern recognition, the match usually has to be exact: “either it will or will not be a match.” The patterns generally have the form of either sequences or tree structures. Uses of pattern matching include outputting the locations (if any) of a pattern within a token sequence, to output some component of the matched pattern, and to substitute the matching pattern with some other token sequence

Pattern matching

Putting it into the human language means that instead of comparing expressions by exact values (think of if/else/switch statements), you literally match by patterns or shape of the data. Pattern could be constant value, tuple, variable, etc. For full definition please refer to the documentation. Initially, pattern matching was introduced in C# 7. It was shipped with basic capabilities to recognize const, type and var patterns. The language was extended with is and when keywords. One of the last pieces to make it work was introduction of discards for deconstruction of tuples and objects. Combining all these together you was able to use pattern matching in if and switch expressions:

if (o is null) Console.WriteLine("o is null");
if (o is string s && s.Trim() != string.Empty)
        Console.WriteLine("whoah, o is not null");
switch (o)
    case double n when n == 0.0: return 42;
    case string s when s == string.Empty: return 42;
    case int n when n == 0: return 42;
    case bool _: return 42;
    default: return -1;

C# 8 extended pattern matching with switch expressions and three new ways of expressing a pattern: positional, property and tuple. Again, I will refer to full documentation for the details.

In this post I would like to show a real-world example of using pattern matching power. Let’s say you want to build an SQL-query based on list of filters you receive as an input from HTTP request. For example we would like to get a list of all shurikens filtered by shape and material:


We need a model to which we can map this request with list of filters:

public class ShurikenQuery
    [BindProperty(Name = "filters", SupportsGet = true)]
    public IDictionary<string, string> ShurikenFilters { get; set; }

Now, let’s write a function which builds SQL-query string based on provided filters:

private static string BuildFilterExpression(ShurikenQuery query)
    if (query is null)
        throw new ArgumentNullException(nameof(query));

    const char Delimiter = ',';

    var expression = query.ShurikenFilters?.Aggregate(new StringBuilder(), (acc, ms) =>
        var key = ms.Key;
        var value = ms.Value;
        var exp = (key, value) switch
            (_, null) => $"[{key}] = ''",
            (_, var val) when val.Contains(Delimiter) =>
                @$"[{key}] IN ({string.Join(',', val
                    .Replace("'", string.Empty)
                    .Replace("\"", string.Empty)
                    .Split(Delimiter).Select(x => $"'{x}'"))})",
            (_, _) => $"[{key}] = '{value}'"
        return exp != null ? acc.AppendLine($" AND {exp}") : acc;
    return expression?.ToString() ?? string.Empty;

Let’s break this code down. On line 8 we use LINQ Aggregate function which do the main work of building a filter string. We want to iterate over each KeyValuePair in dictionary and based on the data shape in it create a string which represents expression which could be provided for SQL WHERE clause.

On line 10 and 11 we extract key and value for KeyValuePair in own variables just for convenience.

Lines between 12-21 are of main interest to us – that’s where all magic happens. On line 12 we wrapped key and value in a tuple and use switch expression to start pattern match. On line 14 we check if value variable is null (_ in key position means discard – it’s when we don’t care what actual value is). If that’s a case we produce string like [Shape]=”. On line 15-19 again, we not interested what in key position, but now we assign value to a dedicated variable val we can work with. Next, we check if this value contains filter with multiple values (like in case filters[shape]=’star,stick’) and split it in separate values, removing ” and ‘ on the way we go. We want to translate this into SQL IN operator, so string after processing this pattern looks like this: [Shape] IN (‘star’, ‘stick’). Last pattern matches for remaining cases of single value filters (like filters[material]=’kugi-gata’) which produce following string: [Material] = ‘kugi-gata’. Line 23 applies AND to string we built and accumulating result in a StringBuilder variable we provided in initial run of Aggregate function on line 8.

If we would put (_, _) as a first line in a switch expression other patterns will be not evaluated, because (_, _) will catch all values

Be aware that in pattern matching the order is everything

Finally, the resulting string we return looks like this:

 AND [Shape] IN ('star','stick') AND [Material] = 'kugi-gata'

And that’s a valid string for SQL WHERE clause. As you can see pattern matching is a real deal and could be used in a lot of cases for parsing expressions. With C# 9 pattern matching will be extended even more with relational and logical patterns.

Hope you enjoyed. Stay tuned and happy coding.